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The possibility of the isentropic compression of hydrogen with a real equation of state up to high values of the density at which 
an anomaly, associated with the transition of hydrogen from the molecular phase to the atomic phase, is observed in the behaviour 
of the isentrope, is investigated. The possibility of penetrating the above-mentioned part of the change in the density during the 
compression of the gas in a shock-free manner is analysed. The problem is not about obtaining very high degrees of compression, 
which greatly exceed the value of the density in the anomalous range; when necessary, it is also assumed that density values which 
are less than, but close, to the anomalous range have already been obtained by a preliminary shock-free compression. Jt is shown 
that, in the case of the shock-free compression of plane, cylindrical and spherical layers of a uniform gas, which is initially at 
rest, an infinite density gradient of the gas arises in the flow before the final instant of compression if the density has reached 
values in the anomalous range. Self-similar solutions which describe the shock-free compression of initially uniform cylindrical 
and spherical volumes of hydrogen at rest are investigated. It is shown, using a numerical solution of the corresponding systems 
of ordinary differential equations, that isentropic compression up to density values both in the anomalous range and even higher 
is possible in this case. A unified approach to the mathematical investigation of the shock-free, strong compression of a gas was 
proposed in [l]. In particular, an analogue of a centred Riemann wave; which is continuously adjacent to the quiescent, 
uniform gas, is constructed for a gas with an arbitrary equation of state. The possibility of the shock-free compression of a gas 
with an arbitrary equation of state up to a certain density, which is greater than the initial density, is thereby proved. The form 
of the equation of state of the gas has to be specified for a more detailed description of the process of isentropic compression. 
The strong compression of hydrogen with a real equation of state, which is determined in appropriate physical experiments, is 
of the greatest interest in solving the problem of controlled thermonuclear synthesis [2]. 0 2003 Elsevier Science Ltd. All rights 
reserved. 

It has been established experimentally [3] that, during the isentropic compression of hydrogen up to 
very high densities in the range 0.9 g/cm3 < p < 1.25 g/cm3, the rate of increase of the pressure from 
260 to 380 GPa changes substantially (Fig. 1) and that this is associated [3] with the transition of hydrogen 
from the molecular state to the atomic state. 

The aim of this paper is to investigate mathematically the possibility of the shock-free compression 
of hydrogen with an indicated isentrope up to density values in the anomalous range and higher. 

In order to obtain the relation c2 = c2(p) (here c is the speed of sound and c2 = p’(p)), numerical 
and graphical differentiation of the relationp = p(p) being considered was carried out and a certain 
averaged curve was taken as c’(p). After this, a change was made to dimensionless variables, with a 
choice of the density scale of 0.5 g/cm3 and of the speed of sound scale of 16 km/s. The pressure scale 
is not specified and the previous notation is retained for the dimensionless variables. 

A graph of c2 = c”(p) in dimensionless variables is shown in Fig. 2. In this case, the establishment 
of the relationp(p) by integrating the function c2(p) gives a good result both on the whole as well as 
in the most interesting range of variation of the dimensionless density 1.8 < p < 2.5. The relative error 
does not exceed 0.5%. It is subsequently assumed that c(p) is an analytic function when p r 0. 

When 1.80 < p < 2.16, the second derivativep”(p) is negative and, therefore, the medium being 
considered when 1.80 < p < 2.16, according to Ovsyannikov’s terminology (the 0 terminology), is not 
a normal gas. 

According to Rozhdestvenskii’s and Yanenko’s terminology [5] (the R-Ya terminology), a gas is normal 
ifpVV > 0 and is not normal ifpVV < 0 (V = l/p > 0 is the specific volume). Since [4] 

V3JP”” = 2P,+PP,, 

iPrik1. Mat. Mekh. Vol. 67, No. 1, pp. 42-48, 2003. 

31 



38 S. I? Bautin and S. A. Yagupov 

Fig. 1 

Fig. 2 

a gas which is normal according to the 0 terminology is also normal according to the K-Ya terminology. 
However, equations of state are possible when a gas which is normal according to the R-Ya terminology 
is not normal according to the 0 terminology. 

It follows from the last equality that the sign of the derivative pvv is identical to the sign of the 
expression 

2P, + PP,, = 2WP)W)? a(p) = C(P) = 0)/p+ c’(p) 

Consequently, when p > 0, c(p) > 0, the signs ofpvv and a(p) are identical. It is well known that, in 
a centred Riemann wave, the gas flow is recovered using the following formulae (t is the time) 

x 
- = u(p) &c(p); u(p) = ? 
I 

Ydp (1) 

Hence, apart from the sign, the expression a(p) is a derivative of the function 

X,(P) = U(P) &C(P) (2) 

and a change of sign of the derivative pvv is equivalent to the non-monotonicity of the function (2), 
which specifies the flow in the centred wave. Note that it is necessary to differentiate the function c(p) 
to determine the function a(p), and to integrate the fraction c(p)/p to determinexi(p). Since the initial 
functionp(p) is only approximately specified, the second of the above-mentioned operations is carried 
out more accurately. 

A graph of the function x1(p) for the equation of state being considered is shown in Fig. 3 and; to 
be specific, the upper sign is taken in the formula for the centred wave, that is, the centred compression 
wave moves from left to right. When recovering the function u(p), we put ~(0.44) = 0. 

Hence, according to the R-Ya terminology also, the medium is not a normal gas when pl < p c ~2, 
where p1 = 1.84, p2 = 2.16. 
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When 0 G p d pl, the centred Riemann wave is uniquely defined using formula (1). Hence, a plane 
layer of gas which is initially at rest with a density less than p1 can be compressed in a shock-free manner 
up to a density p = pl. However, at the instant when the density of the gas on the compressing piston 
becomes equal to pl, an infinite gradient occurs in the gas flow (actually, on the piston) and the derivative 
of the density with respect to the spatial variable becomes unbounded. 

It is quite difficult not only to describe the flow of the gas being considered after the above-mentioned 
infinite gradient has occurred but even to predict the flow configuration which occurs after this instant 
of time. The possible difficulties in this case are illustrated most simply by the example of the compression 
of a plane layer when the flow is defined by formula (1) and thle relation p = p(l, x) is established using 
the graph shown in Fig. 3. 

Due to the fact that the function x1(p) is non-monotonic for all values of x in the range xl2 G x G xl1 
(see Fig. 3), we can postulate the existence of a non-zero jump in the density ([p] # 0). For example 
(see Fig. 3) 

[Plx=q2 = P*-P2*<0> [PI,=,,, = P,*-PI>0 

A problem regarding the decay of a discontinuity [4,5] is then obtained, which holds at any point in 
the range [x12,x111. It is possible that it is necessary to locate the discontinuity at the point x = x12, where 
the first two-valued property of the relation p = p(t, x) ( f=C,,nSt occurs. In order to solve the resulting 
problem on the decay of a discontinuity, it is not only necessary to know the isentrope p = p(p) 
(Fig. 1) but, also, the general equations of state in the formp = p(p, S), e = e(p, S) (S is the entropy 
and e is the internal energy) [4,5]. If these relations are known for the range of variation of the density 
and pressure of hydrogen being considered, it is possible that, using previously developed approaches 
[5-71, the configuration of the flow, which arises after such a discontinuity decays, can be successfully 
predicted. Both values specifying the density jump (both the pair (pZ*, pZ) and the pair (p,, pIa), as well 
as any pair of values of p which corresponds to points x in the range [x12, xlJ), fall on the part of 
the curve c’(p) where [c’(p)]’ 2 0, although they are separated by a region in which [c’(p)]’ < 0. It can 
therefore be assumed that the decay of such a discontinuity occurs as in the case of a normal gas, that 
is, with the formation of a compression shock wave. 

Hence, it can be concluded from what has been said above that it is impossible to compress a plane 
layer of gas in a shock-free manner from a density of less than p = p1 up to a density greater than 
P = Pl* 

Remarks. 1. The generalized solution of the problem of a centred Riemann wave when the point (t = 0, r = r*), 
Y, > 0 in the flow is singular has been presented in [I] for the cylindrical and spherically symmetric cases. Here, 
the leading terms, which described the singularity in the flow in these cases, are identical with the expressions using 
formulae (1). The shock-free compression from p < p1 to p > p1 of cylindrical and spherical layers of the gas being 
considered, which, at the instant of time t = 0, have non-zero internal radii, is therefore also impossible. 

2. The function C”(p) can be changed so that the difference in the values of its local extrema is smaller: 
pmax = 2.75, pmin = 2.59. Then, the functionxI(p) becomes monotonic. Consequently, the new gas which has been 
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obtained is normal according to the R-Ya terminology but will not be normal according to the 0 terminology. In 
this case, the shock-free compression of plane, cylindrical and spherical layers of the gas up to anomalous density 
values is possible. 

3. It is also impossible to rule out such a hypothetical situation when, in the case of another flow configuration 
(for example, when the external action is definitely non-monotonic), the shock-free compression of one-dimensional 
layers of the initial gas, which is not normal according to the R-Ya terminology, becomes possible. 

The possibility of the bounded shock-free compression of cylindrical and spherical uniform volumes 
of gas at rest, with the equation of state being considered (see Figs 1 and 2) is next investigated. The 
required flows arise at the instant of time t = 0, when the compression waves, which, when t < 0, are 
continuously adjoining the homogeneous state of rest through the acoustic C--characteristic, converge 
to the axis or to the centre of symmetry. At the instant of time t = 0, the compression wave is not focussed 
at the point t = r = 0 and has a continuous distribution from r - 0 up to a certain Y = rr > 0. In the 
case of a polytropic equation of state, the unknown self-similar solutions [8] describe [9-l l] the isentropic 
compression of a gas both up to an infinite value of the density as well as up to any previously specified 
finite value of the density. 

A system of equation of gas dynamics [4] in dimensionless variables, introduced in the standard 
manner 

pt+upr+p(ur+vuIr) = 0, ur+uu~+c2(p)prIp = 0 (3) 

is used to describe one-dimensional isentropic flows. The value v = 0, 1, 2 correspond to the cases sf 
plane, cylindrical and spherical symmetry, r = (x: + . . . + ~f+~)“~, x1, x2, x3 are the spatial coordinates, 
u is the gas velocity and C2(p) is specified by a dependence which is determined by the graph shown in 
Fig. 2. 

A standard change of variables 5 = t/r, z = t is carried out and one puts a/& = 0 in order to construct 
self-similar solutions of system (3). As a result, instead of system (3), a system of ordinary differential 
equations in p = p@), u = u(Q is obtained 

(I - &A)p’ - &x4’ = -vu, -&&p)p’lp -t (1 -f$)u” = 0 (4) 

In the case when v = 0, this system is homogeneous. In order that there should not only be a trivial 
solution, it is necessary to require that its determinant is equal to zero 

A=(1 -mu)” 

which leads to the following relations 

(I- 5~) = k@(p), duldp = 

As a result, solution (1) written out above is obtained. 
When v = 1 or 2, system (4) is not homogeneous and can be rewritten in the equivalent form 

p’ = -vpu( 1 -cu>/A, U’ = -v&?(p)ulA F> 

it is impossible to reduce system (5) to a single equation, as we done in the case of a polytropic gas [S] 
and the singular points of system (5) are therefore unknown in advance. 

The solutions of system (5) can be constructed numerically by specifying the initial values 

p(0) = poo>o, u(0) = U,<O 

at the singular point 5 = 0 and calculating the integral curves in the direction of decreasing 5, that is, 
when 4 c 0. 

Graphs of the solutions p = p(5) b 0 and u = u(c) 6 0 of system (5), constructed when v = 2 in the 
range co < 5 s 0 f rom the initial values poo = 3, uoO = -1, are labelled in Fig. 4 with the number 1. In 
the case of these solutions when 5 = to = -2, the numerators and denominators of both the right-hand 
sides of system (5) vanish, u&J = 0, and the value of p” = ~(5,) is such that C2(po) = l/t;. Consequently, 
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Fig. 4 

the line t/r =co is the acoustic C--characteristic of the uniform gas at rest with a density p = p” and the 
self-similar compression wave constructed continuously adjoins this uniform state of rest through this 
characteristic. 

The trajectoryAB of the motion of the impermeable piston, which creates the self-similar compression 
wave in the OAB domain, through the characteristicA0, which continuously adjoins the uniform state 
of rest, is shown in the inset in Fig. 4. In this example, the following values are obtained in the calculations 

rA = 0.500751, rB = 0.261258, pA = 0.4253, pe = 3 

(rA, and rB are the radii of the indicated points and p,+ and pB are the values of the densities of the 
uncompressed and compressed gas, respectively) and the relative difference between the masses of 
the uncompressed and compressed gas in the example being considered does not exceed 0.2%. This 
magnitude represents the accuracy of the numerical construction of the self-similar solution of 
system (3). 

The example given above shows that the shock-free compression of a spherical volume of gas with 
an initial density which is less than the values from the anomalous range of densities up to a density 
which exceeds the values from the anomalous interval, is possible. 

Graphs of the solution of system (5) constructed for v = 2 with the initial values pa0 = 3, uoD = -0.4, 
are labelled in Fig. 4 with the number 2. In the case of these solutions when 5 = c* = -0.6, only the 
denominators of the two right-hand sides of system (5) vanish and the numerators are non-zero. This 
fact can be treated as the occurrence of infinite derivatives of pr and u, with the subsequent formation 
of shock wave in the gas flow. 

Similar phenomena also occur in the case when v = 1: if the value of uoo has a large modulus, shock- 
free compression is possible. If uoo is insufficiently large in modulus, the anomalous density region cannot 
be successfully traversed isentropically. 
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